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You are NOT allowed to use any type of calculators.

1 (15 pts) Routh-Hurwitz criterion

Determine all values @ € R and b € R for which the polynomial p(A) = A\ +aX3 +aA? +bA+b
is stable.

REQUIRED KNOWLEDGE: Routh-Hurwitz criterion.

SOLUTION:

Applying Routh-Hurwitz criterion, we get the following table:

A A3 A2 A 1
a’x 1 a a b b
1L5x a’” b ”
(a® —b) A>< a? a®>—b ab ab
a? X _ a’?—b ] ab
(a® = b)? —ab? ab(a? — b)

From the first reduction step, we see that the polynomial A\* + a\® + aA? 4+ b\ + b is stable if
and only if a > 0 and the polynomial a?)\® + (a? — b)A\% + ab\ + ab is stable. From the second, we
see that the polynomial a?)\® + (a? — b)A\? + ab\ + ab is stable if and only if a?(a® — b) > 0 and
the polynomial (a? — b)2\? — ab?\ + ab(a? — b) is stable.

It follows from the first step that p(\) is stable only if a > 0. However, this would mean that
the polynomial (a? — b)2A\% — ab?\ + ab(a? — b) is not stable. Therefore, p(\) is not stable for all
values of a and b.




2  (3464+6420=35 pts) Stability, controllability, stabilizability and state feedback

Let
0 10 1
A=10 0 1| and B=|1
1 -1 0 1
(a) Is the system & = Ax stable?
(b) Is the system @ = Ax + Bu controllable?
(c) Is the system @ = Ax 4+ Bu stabilizable?
(d) Determine the state feedback u = Fz for which the closed loop system matrix A + BF has

the characteristic polynomial paypr(A) = (A + 1)3.

REQUIRED KNOWLEDGE: stability, controllability, stabilizability, feedback stabiliza-
tion.

SOLUTION:

2a: The system & = Ax is stable if and only if all eigenvalues of the matrix A have negative
real parts. Note that

A -1 0
det(\ —A)=det (| 0 X —1])=X+x-1
-1 1 A

One can apply the Routh-Hurwitz test to the polynomial A4(\) = A\ + A — 1 to check if it
is stable or not. However, we already know that a monic polynomial is stable only if all its co-
efficients are positive. Since this is not the case for the polynomial A 4()\), the system is not stable.

2b: Note that we have

(B AB A?B] =

— =

11
10
0 0
It can be easily verified that the determinant of this matrix is not zero and hence its rank is equal
to three. As such, the system is controllable.
2c: Every controllable system is also stabilizable.
2d: From the pole placement theorem, we know that for any monic polynomial p(\) there

exists F' such that Aaypr(A) = p(A). In order to find the feedback matrix F', we proceed as in
the proof of the pole placement theorem. Let

1
g3 =B=|1
1

@2=AB+0-B=AB=

O~ =

1 1 2
q=A’B+0-AB+1-B=A’B+B= 0|+ |1| = |1
0 1 1

and also let

S=lg ¢ @)=

— =N
O = =
—_ ==



Note that

1 -1 0
S'l=]10 1 -1
-1 1 1
Let
A=S"1A48
1 -1 o]fJo 1 0]f2 1 1
=0 1 —=1{fo o 1|1 1 1
-1 1 1] [1 -1 0] |1 0 1
0 1 —-1]7J2 1 1 0 1 0
=(-1 1 1|1 1 1]=1]0 0 1
| 1 -2 1] |1 0 1 1 -1 0
B 1 -1 0] 0
B=S"'B=| 0 1 -1} |1l =10
-1 1 1] 1 1

Note that (A +1)3 = A3 + 3A? + 3X + 1. Then, we can choose
F=[-1 -3 —=3]-[1 -1 0]=[-2 -2 -3].

One can verify that det(\[ — A—BF') = (A\+1)3. To find F, observe that A+ BF = S~'(A+BF)S
and hence F = FS—!. This results in

F=Fs'=[-2 -2 =3]| 0 1 —-1|l=[1 -3 —1]




3  (6+9=15 pts) Observability and detectability

Consider the system

T

8

I
co
R oo

T

q
b
r]

—

y=\p
where p, ¢, and r are real numbers. Determine all values of p, ¢, and r for which the system

(a) is observable.

(b) is detectable.

REQUIRED KNOWLEDGE: eigenvalue test for observability and detectability.

SOLUTION:

3a: A linear system & = Ax y = Cx where x € R™ is observable if and only if

A—AI

rank { c

} =n for all A € o(A).

Since the matrix A of the problem is triangular, the eigenvalues are nothing but the diagonal
elements, that is 0(A) = {p}. Then, we have

0 q r 0 q r
A—-X| 0 0 ¢q| 0 0 q| _
rank[ c }rank 00 0 = rank 00 0 =3 << p#0#gq.
poqr p 00

3b: A linear system & = Az y = Cx where x € R" is detectable if and only if

A—- I

rank [ C

] =n for all A € o(A) with Re(X) > 0.

Then, we can conclude that the system we have is detectable if and only if

p<0OR (p>0 AND ¢ #0).




4 (25 pts) Unobservable subspace

Let A € R®*™ and C € R™*™. Show that the subspace
(ker C' | A) :==kerCNkerCAN---Nker CA"!

is the largest A-invariant subspace that is contained in ker C.

REQUIRED KNOWLEDGE: invariance under a linear map.

SOLUTION:
Note first that the subspace (ker C' | A) is contained in ker C' by definition. To show that it is
A-invariant, let « € (ker C | A). This would mean that

CA*z =0
for k=0,1,...,n — 1. Then, it follows from the Cayley-Hamilton theorem that
CAkz =0

for all k > 0. In turn, this implies that Az € (ker C' | A). Hence, (ker C' | A) is A-invariant. In
order to show that it is the largest of such subspaces, let V be an A-invariant subspace that is

contained in ker C'. Then, we have
AV CV CkerC.

By repeating this argument, we get
AV C AV CV CkerC.
Therefore, one can conclude by induction on k that
ARV C ker C

for all k£ > 0. Equivalently, we have
V C ker CA*

for all k > 0. Hence, we see that V C (kerC | A). In other words, (ker C' | A) is the largest
A-invariant subspace that is contained in ker C.







