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 (15 pts) Routh-Hurwitz criterion

Determine all values a ∈ R and b ∈ R for which the polynomial p(λ) = λ4 + aλ3 + aλ2 + bλ+ b
is stable.

Required Knowledge: Routh-Hurwitz criterion.

Solution:

Applying Routh-Hurwitz criterion, we get the following table:

λ4 λ3 λ2 λ 1

a 1 a a b b×

1 a b×
−

(a2 − b) a2 a2 − b ab ab×

a2 a2 − b ab×
−

(a2 − b)2 −ab2 ab(a2 − b)

From the first reduction step, we see that the polynomial λ4 + aλ3 + aλ2 + bλ+ b is stable if
and only if a > 0 and the polynomial a2λ3 + (a2 − b)λ2 + abλ+ ab is stable. From the second, we
see that the polynomial a2λ3 + (a2 − b)λ2 + abλ + ab is stable if and only if a2(a2 − b) > 0 and
the polynomial (a2 − b)2λ2 − ab2λ+ ab(a2 − b) is stable.

It follows from the first step that p(λ) is stable only if a > 0. However, this would mean that
the polynomial (a2 − b)2λ2 − ab2λ+ ab(a2 − b) is not stable. Therefore, p(λ) is not stable for all
values of a and b.



 (3+6+6+20=35 pts) Stability, controllability, stabilizability and state feedback

Let

A =

0 1 0
0 0 1
1 −1 0

 and B =

1
1
1

 .
(a) Is the system ẋ = Ax stable?

(b) Is the system ẋ = Ax+Bu controllable?

(c) Is the system ẋ = Ax+Bu stabilizable?

(d) Determine the state feedback u = Fx for which the closed loop system matrix A+BF has
the characteristic polynomial pA+BF (λ) = (λ+ 1)3.

Required Knowledge: stability, controllability, stabilizability, feedback stabiliza-
tion.

Solution:

2a: The system ẋ = Ax is stable if and only if all eigenvalues of the matrix A have negative
real parts. Note that

det(λI −A) = det
( λ −1 0

0 λ −1
−1 1 λ

) = λ3 + λ− 1.

One can apply the Routh-Hurwitz test to the polynomial ∆A(λ) = λ3 + λ − 1 to check if it
is stable or not. However, we already know that a monic polynomial is stable only if all its co-
efficients are positive. Since this is not the case for the polynomial ∆A(λ), the system is not stable.

2b: Note that we have [
B AB A2B

]
=

1 1 1
1 1 0
1 0 0

 .
It can be easily verified that the determinant of this matrix is not zero and hence its rank is equal
to three. As such, the system is controllable.

2c: Every controllable system is also stabilizable.

2d: From the pole placement theorem, we know that for any monic polynomial p(λ) there
exists F such that ∆A+BF (λ) = p(λ). In order to find the feedback matrix F , we proceed as in
the proof of the pole placement theorem. Let

q3 = B =

1
1
1


q2 = AB + 0 ·B = AB =

1
1
0


q1 = A2B + 0 ·AB + 1 ·B = A2B +B =

1
0
0

+

1
1
1

 =

2
1
1


and also let

S =
[
q1 q2 q3

]
=

2 1 1
1 1 1
1 0 1

 .



Note that

S−1 =

 1 −1 0
0 1 −1
−1 1 1

 .
Let

A = S−1AS

=

 1 −1 0
0 1 −1
−1 1 1

0 1 0
0 0 1
1 −1 0

2 1 1
1 1 1
1 0 1


=

 0 1 −1
−1 1 1

1 −2 1

2 1 1
1 1 1
1 0 1

 =

0 1 0
0 0 1
1 −1 0


B = S−1B =

 1 −1 0
0 1 −1
−1 1 1

1
1
1

 =

0
0
1

 .
Note that (λ+ 1)3 = λ3 + 3λ2 + 3λ+ 1. Then, we can choose

F =
[
−1 −3 −3

]
−
[
1 −1 0

]
=
[
−2 −2 −3

]
.

One can verify that det(λI−A−BF ) = (λ+1)3. To find F , observe that A+BF = S−1(A+BF )S
and hence F = FS−1. This results in

F = FS−1 =
[
−2 −2 −3

]  1 −1 0
0 1 −1
−1 1 1

 =
[
1 −3 −1

]



 (6+9=15 pts) Observability and detectability

Consider the system

ẋ =

p q r
0 p q
0 0 p

x
y =

[
p q r

]
x

where p, q, and r are real numbers. Determine all values of p, q, and r for which the system

(a) is observable.

(b) is detectable.

Required Knowledge: eigenvalue test for observability and detectability.

Solution:

3a: A linear system ẋ = Ax y = Cx where x ∈ Rn is observable if and only if

rank

[
A− λI
C

]
= n for all λ ∈ σ(A).

Since the matrix A of the problem is triangular, the eigenvalues are nothing but the diagonal
elements, that is σ(A) = {p}. Then, we have

rank

[
A− λI
C

]
= rank


0 q r
0 0 q
0 0 0
p q r

 = rank


0 q r
0 0 q
0 0 0
p 0 0

 = 3 ⇐⇒ p 6= 0 6= q.

3b: A linear system ẋ = Ax y = Cx where x ∈ Rn is detectable if and only if

rank

[
A− λI
C

]
= n for all λ ∈ σ(A) with Re(λ) > 0.

Then, we can conclude that the system we have is detectable if and only if

p < 0 OR ( p > 0 AND q 6= 0 ).



 (25 pts) Unobservable subspace

Let A ∈ Rn×n and C ∈ Rm×n. Show that the subspace

〈kerC | A〉 := kerC ∩ kerCA ∩ · · · ∩ kerCAn−1

is the largest A-invariant subspace that is contained in kerC.

Required Knowledge: invariance under a linear map.

Solution:
Note first that the subspace 〈kerC | A〉 is contained in kerC by definition. To show that it is
A-invariant, let x ∈ 〈kerC | A〉. This would mean that

CAkx = 0

for k = 0, 1, . . . , n− 1. Then, it follows from the Cayley-Hamilton theorem that

CAkx = 0

for all k > 0. In turn, this implies that Ax ∈ 〈kerC | A〉. Hence, 〈kerC | A〉 is A-invariant. In
order to show that it is the largest of such subspaces, let V be an A-invariant subspace that is
contained in kerC. Then, we have

AV ⊆ V ⊆ kerC.

By repeating this argument, we get

A2V ⊆ AV ⊆ V ⊆ kerC.

Therefore, one can conclude by induction on k that

AkV ⊆ kerC

for all k > 0. Equivalently, we have
V ⊆ kerCAk

for all k > 0. Hence, we see that V ⊆ 〈kerC | A〉. In other words, 〈kerC | A〉 is the largest
A-invariant subspace that is contained in kerC.




