Integrerend project systeemtheorie

23/01/2014, Thursday, 14:00-17:00

You are NOT allowed to use any type of calculators.

1 (15 pts)
Routh-Hurwitz criterion

Determine all values $a \in \mathbb{R}$ and $b \in \mathbb{R}$ for which the polynomial $p(\lambda)=\lambda^{4}+a \lambda^{3}+a \lambda^{2}+b \lambda+b$ is stable.

Required Knowledge: Routh-Hurwitz criterion.

Solution:

Applying Routh-Hurwitz criterion, we get the following table:

From the first reduction step, we see that the polynomial $\lambda^{4}+a \lambda^{3}+a \lambda^{2}+b \lambda+b$ is stable if and only if $a>0$ and the polynomial $a^{2} \lambda^{3}+\left(a^{2}-b\right) \lambda^{2}+a b \lambda+a b$ is stable. From the second, we see that the polynomial $a^{2} \lambda^{3}+\left(a^{2}-b\right) \lambda^{2}+a b \lambda+a b$ is stable if and only if $a^{2}\left(a^{2}-b\right)>0$ and the polynomial $\left(a^{2}-b\right)^{2} \lambda^{2}-a b^{2} \lambda+a b\left(a^{2}-b\right)$ is stable.

It follows from the first step that $p(\lambda)$ is stable only if $a>0$. However, this would mean that the polynomial $\left(a^{2}-b\right)^{2} \lambda^{2}-a b^{2} \lambda+a b\left(a^{2}-b\right)$ is not stable. Therefore, $p(\lambda)$ is not stable for all values of a and b.

Let

$$
A=\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(a) Is the system $\dot{x}=A x$ stable?
(b) Is the system $\dot{x}=A x+B u$ controllable?
(c) Is the system $\dot{x}=A x+B u$ stabilizable?
(d) Determine the state feedback $u=F x$ for which the closed loop system matrix $A+B F$ has the characteristic polynomial $p_{A+B F}(\lambda)=(\lambda+1)^{3}$.

REQUIRED KNOWLEDGE: stability, controllability, stabilizability, feedback stabilization.

Solution:

2a: The system $\dot{x}=A x$ is stable if and only if all eigenvalues of the matrix A have negative real parts. Note that

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\left[\begin{array}{rrr}
\lambda & -1 & 0 \\
0 & \lambda & -1 \\
-1 & 1 & \lambda
\end{array}\right]\right)=\lambda^{3}+\lambda-1
$$

One can apply the Routh-Hurwitz test to the polynomial $\Delta_{A}(\lambda)=\lambda^{3}+\lambda-1$ to check if it is stable or not. However, we already know that a monic polynomial is stable only if all its coefficients are positive. Since this is not the case for the polynomial $\Delta_{A}(\lambda)$, the system is not stable.

2b: Note that we have

$$
\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

It can be easily verified that the determinant of this matrix is not zero and hence its rank is equal to three. As such, the system is controllable.

2c: Every controllable system is also stabilizable.
2d: From the pole placement theorem, we know that for any monic polynomial $p(\lambda)$ there exists F such that $\Delta_{A+B F}(\lambda)=p(\lambda)$. In order to find the feedback matrix F, we proceed as in the proof of the pole placement theorem. Let

$$
\begin{aligned}
& q_{3}=B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& q_{2}=A B+0 \cdot B=A B=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& q_{1}=A^{2} B+0 \cdot A B+1 \cdot B=A^{2} B+B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

and also let

$$
S=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Note that

$$
S^{-1}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]
$$

Let

$$
\begin{aligned}
\bar{A} & =S^{-1} A S \\
& =\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rrr}
0 & 1 & -1 \\
-1 & 1 & 1 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right] \\
\bar{B} & =S^{-1} B=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Note that $(\lambda+1)^{3}=\lambda^{3}+3 \lambda^{2}+3 \lambda+1$. Then, we can choose

$$
\bar{F}=\left[\begin{array}{lll}
-1 & -3 & -3
\end{array}\right]-\left[\begin{array}{lll}
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{lll}
-2 & -2 & -3
\end{array}\right] .
$$

One can verify that $\operatorname{det}(\lambda I-\bar{A}-\bar{B} \bar{F})=(\lambda+1)^{3}$. To find F, observe that $\bar{A}+\bar{B} \bar{F}=S^{-1}(A+B F) S$ and hence $F=\bar{F} S^{-1}$. This results in

$$
F=\bar{F} S^{-1}=\left[\begin{array}{lll}
-2 & -2 & -3
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & -3 & -1
\end{array}\right]
$$

Consider the system

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
p & q & r \\
0 & p & q \\
0 & 0 & p
\end{array}\right] x \\
& y=\left[\begin{array}{lll}
p & q & r
\end{array}\right] x
\end{aligned}
$$

where p, q, and r are real numbers. Determine all values of p, q, and r for which the system
(a) is observable.
(b) is detectable.

REQUIRED KNOWLEDGE: eigenvalue test for observability and detectability.

Solution:

3a: A linear system $\dot{x}=A x \quad y=C x$ where $x \in \mathbb{R}^{n}$ is observable if and only if

$$
\operatorname{rank}\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]=n \quad \text { for all } \lambda \in \sigma(A) .
$$

Since the matrix A of the problem is triangular, the eigenvalues are nothing but the diagonal elements, that is $\sigma(A)=\{p\}$. Then, we have

$$
\operatorname{rank}\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
0 & q & r \\
0 & 0 & q \\
0 & 0 & 0 \\
p & q & r
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ccc}
0 & q & r \\
0 & 0 & q \\
0 & 0 & 0 \\
p & 0 & 0
\end{array}\right]=3 \quad \Longleftrightarrow \quad p \neq 0 \neq q .
$$

3b: A linear system $\dot{x}=A x \quad y=C x$ where $x \in \mathbb{R}^{n}$ is detectable if and only if

$$
\operatorname{rank}\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]=n \quad \text { for all } \lambda \in \sigma(A) \text { with } \operatorname{Re}(\lambda) \geqslant 0
$$

Then, we can conclude that the system we have is detectable if and only if

$$
p<0 \text { OR }(p>0 \text { AND } q \neq 0) .
$$

Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times n}$. Show that the subspace

$$
\langle\operatorname{ker} C \mid A\rangle:=\operatorname{ker} C \cap \operatorname{ker} C A \cap \cdots \cap \operatorname{ker} C A^{n-1}
$$

is the largest A-invariant subspace that is contained in ker C.

REQUIRED KNOWLEDGE: invariance under a linear map.

SOLUTION:

Note first that the subspace $\langle\operatorname{ker} C \mid A\rangle$ is contained in $\operatorname{ker} C$ by definition. To show that it is A-invariant, let $x \in\langle\operatorname{ker} C \mid A\rangle$. This would mean that

$$
C A^{k} x=0
$$

for $k=0,1, \ldots, n-1$. Then, it follows from the Cayley-Hamilton theorem that

$$
C A^{k} x=0
$$

for all $k \geqslant 0$. In turn, this implies that $A x \in\langle\operatorname{ker} C \mid A\rangle$. Hence, $\langle\operatorname{ker} C \mid A\rangle$ is A-invariant. In order to show that it is the largest of such subspaces, let \mathcal{V} be an A-invariant subspace that is contained in $\operatorname{ker} C$. Then, we have

$$
A \mathcal{V} \subseteq \mathcal{V} \subseteq \operatorname{ker} C
$$

By repeating this argument, we get

$$
A^{2} \mathcal{V} \subseteq A \mathcal{V} \subseteq \mathcal{V} \subseteq \operatorname{ker} C
$$

Therefore, one can conclude by induction on k that

$$
A^{k} \mathcal{V} \subseteq \operatorname{ker} C
$$

for all $k \geqslant 0$. Equivalently, we have

$$
\mathcal{V} \subseteq \operatorname{ker} C A^{k}
$$

for all $k \geqslant 0$. Hence, we see that $\mathcal{V} \subseteq\langle\operatorname{ker} C \mid A\rangle$. In other words, $\langle\operatorname{ker} C \mid A\rangle$ is the largest A-invariant subspace that is contained in $\operatorname{ker} C$.

